buck电路计算,Buck-Boost升降压直流斩波电路。

时间:2023-01-23 12:35:00 编辑:大鹏 来源:长期打折网

本文目录索引 1,Buck-Boost升降压直流斩波电路。 2,计算buck和boost电路的电感时,di纹波电流怎么取得 3,buck、boost.buck-boost电路中电感怎么计算 4,在功率二极管整流电路中,二极管的RC电路参数计算怎么算啊? 5,请问,如何求buck电路中的电容与电感

本文目录索引

1,Buck-Boost升降压直流斩波电路。

你是不是搞不懂电压的升降啊,公式我记不得了,大概原理还是记得
电感位置的不同,就造成了升压降压
降压就是提取一定比例的脉冲,然后整流虐波,出来低电压,电感大小就调电流了。
升压电感位置和降压不同,具体自己看原理图。开关关断时,电感正负极瞬间逆变,电压正负极逆变的时候,变化的越快,等到的自感电动势越高,记得有个微分公式的,自己查书。就是通过这个逆变升压的,通过占空比调节供电时间,小幅调整电压。

Buck-Boost升降压直流斩波电路。

2,计算buck和boost电路的电感时,di纹波电流怎么取得

150欧电阻的话,对应5V应该是约33mA的电流。 临界模式时,理论峰值电流应为平均电流的2倍,66mA。 按理想计算,占空比应为 5/18=0.278。 如图中的上部: 则要工作在临界模式的电感量应为: (18-5)*0.278/100000/0.066 = 548uH (与你实测的470uH出入不大) 其中,18是输入电压,5是输出电压,0.278是占空比,100000是开关频率,0.066是变化电流(因这里起始电流为0,所以变化电流就是 ...

3,buck、boost.buck-boost电路中电感怎么计算

摘要:提出了一种Boost电路软开关实现方法,即同步整流加上电感电流反向。根据两个开关管实现软开关的条件不同,提出了强管和弱管的概念,给出了满足软开关条件的设计方法。一个24V输入,40V/2.5A输出,开关频率为200kHz的同步Boost变换器样机进一步验证了上述方法的正确性,其满载效率达到了96.9%
关键词:升压电路;软开关;同步整流
引言
轻小化是目前电源产品追求的目标。而提高开关频率可以减小电感、电容等元件的体积。但是,开关频率提高的瓶颈是器件的开关损耗,于是软开关技术就应运而生。一般,要实现比较理想的软开关效果,都需要有一个或一个以上的辅助开关为主开关创造软开关的条件,同时希望辅助开关本身也能实现软开关。
Boost电路作为一种最基本的DC/DC拓扑而广泛应用于各种电源产品中。由于Boost电路只包含一个开关,所以,要实现软开关往往要附加很多有源或无源的额外电路,增加了变换器的成本,降低了变换器的可靠性。
Boost电路除了有一个开关管外还有一个二极管。在较低压输出的场合,本身就希望用一个MOSFET来替换二极管(同步整流),从而获得比较高的效率。如果能利用这个同步开关作为主开关的辅助管,来创造软开关条件,同时本身又能实现软开关,那将是一个比较好的方案。
本文提出了一种Boost电路实现软开关的方法。该方案适用于输出电压较低的场合。
1 工作原理
图1所示的是具有两个开关管的同步Boost电路。其两个开关互补导通,中间有一定的死区防止共态导通,如图2所示。通常设计中电感上的电流为一个方向,如图2第5个波形所示。考虑到开关的结电容以及死区时间,一个周期可以分为5个阶段,各个阶段的等效电路如图3所示。下面简单描述了电感电流不改变方向的同步Boost电路的工作原理。在这种设计下,S2可以实现软开关,但是S1只能工作在硬开关状态。
1)阶段1〔t0~t1〕该阶段,S1导通,L上承受输入电压,L上的电流线性增加。在t1时刻,S1关断,该阶段结束。
2)阶段2〔t1~t2〕S1关断后,电感电流对S1的结电容进行充电,使S2的结电容进行放电,S2的漏源电压可以近似认为线性下降,直到下降到零,该阶段结束。
3)阶段3〔t2~t3〕当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件。
4)阶段4〔t3~t4〕S2的门极变为高电平,S2零电压开通。电感L上的电流又流过S2。L上承受输出电压和输入电压之差,电流线性减小,直到S2关断,该阶段结束。
5)阶段5〔t4~t5〕此时电感L上的电流方向仍然为正,所以该电流只能转移到S2的寄生二极管上,而无法对S1的结电容进行放电。因此,S1是工作在硬开关状态的。
接着S1导通,进入下一个周期。从以上的分析可以看到,S2实现了软开关,但是S1并没有实现软开关。其原因是S2关断后,电感上的电流方向是正的,无法使S1的结电容进行放电。但是,如果将L设计得足够小,让电感电流在S2关断时为负的,如图4所示,就可以对S1的结电容进行放电而实现S1的软开关了。
在这种情况下,一个周期可以分为6个阶段,各个阶段的等效电路如图5所示。其工作原理描述如下。
1)阶段1〔t0~t1〕该阶段,S1导通,L上承受输入电压,L上的电流正向线性增加,从负值变为正值。在t1时刻,S1关断,该阶段结束。
2)阶段2〔t1~t2〕S1关断后,电感电流为正,对S1的结电容进行充电,使S2的结电容放电,S2的漏源电压可以近似认为线性下降。直到S2的漏源电压下降到零,该阶段结束。
3)阶段3〔t2~t3〕当S2的漏源电压下降到零之后,S2的寄生二极管就导通,将S2的漏源电压箝在零电压状态,也就是为S2的零电压导通创造了条件。
4)阶段4〔t3~t4〕S2的门极变为高电平,S2零电压开通。电感L上的电流又流过S2。L上承受输出电压和输入电压之差,电流线性?小,直到变为负值,然后S2关断,该阶段结束。
5)阶段5〔t4~t5〕此时电感L上的电流方向为负,正好可以使S1的结电容进行放电,对S2的结电容进行充电。S1的漏源电压可以近似认为线性下降。直到S1的漏源电压下降到零,该阶段结束。
6)阶段6〔t5~t6〕当S1的漏源电压下降到零之后,S1的寄生二极管就导通,将S1的漏源电压箝在零电压状态,也就是为S1的零电压导通创造了条件。
接着S1在零电压条件下导通,进入下一个周期。可以看到,在这种方案下,两个开关S1和S2都可以实现软开关。
2 软开关的参数设计
以上用同步整流加电感电流反向的办法来实现Boost电路的软开关,其中两个开关实现软开关的难易程度并不相同。电感电流的峰峰值可以表示为
ΔI=(VinDT)/L (1)
式中:D为占空比;
T为开关周期。
所以,电感上电流的最大值和最小值可以表示为
Imax=ΔI/2+Io (2)
Imin=ΔI/2-Io (3)
式中:Io为输出电流。
将式(1)代入式(2)和式(3)可得
Imax=(VinDT)/2L+Io (4)
Imin=(VinDT)/2L-Io (5)
从上面的原理分析中可以看到S1的软开关条件是由Imin对S2的结电容充电,使S1的结电容放电实现的;而S2的软开关条件是由Imax对S1的结电容充电,使S2的结电容放电实现的。另外,通常满载情况下|Imax|�|Imin|。所以,S1和S2的软开关实现难易程度也不同,S1要比S2难得多。这里将S1称为弱管,S2称为强管。
强管S2的软开关极限条件为L和S1的结电容C1和S2的结电容C2谐振,能让C2上电压谐振到零的条件,可表示为式(6)。
将式(4)代入式(6)可得
实际上,式(7)非常容易满足,而死区时间也不可能非常大,因此,可以近似认为在死区时间内电感L上的电流保持不变,即为一个恒流源在对S2的结电容充电,使S1的结电容放电。在这种情况下的ZVS条件称为宽裕条件,表达式为式(8)。
(C2+C1)Vo≤(VinDT/2L+Io)tdead2 (8)
式中:tdead2为S2开通前的死区时间。
同理,弱管S1的软开关宽裕条件为
(C1+C2)Vo≤(VinDT/2L-Io)tdead1 (9)
式中:tdead1为S1开通前的死区时间。
在实际电路的设计中,强管的软开关条件非常容易实现,所以,关键是设计弱管的软开关条件。首先确定可以承受的最大死区时间,然后根据式(9)推算出电感量L。因为,在能实现软开关的前提下,L不宜太小,以免造成开关管上过大的电流有效值,从而使得开关的导通损耗过大。
3 实验结果
一个开关频率为200kHz,功率为100W的电感电流反向的同步Boost变换器进一步验证了上述软开关实现方法的正确性。
该变换器的规格和主要参数如下:
输入电压Vin24V
输出电压Vo40V
输出电流Io0~2.5A
工作频率f200kHz
主开关S1及S2IRFZ44
电感L4.5μH
图6(a),图6(b)及图6(c)是满载(2.5A)时的实验波形。从图6(a)可以看到电感L上的电流在DT或(1-D)T时段里都会反向,也就是创造了S1软开关的条件。从图6(b)及图6(c)可以看到两个开关S1和S2都实现了ZVS。但是从电压vds的下降斜率来看S1比S2的ZVS条件要差,这就是强管和弱管的差异。
图7给出了该变换器在不同负载电流下的转换效率。最高效率达到了97.1%,满载效率为96.9%。
4 结语
本文提出了一种Boost电路软开关实现策略:同步整流加电感电流反向。在该方案下,两个开关管根据软开关条件的不同,分为强管和弱管。设计中要根据弱管的临界软开关条件来决定电感L的大小。因为实现了软开关,开关频率可以设计得比较高。电感量可以设计得很小,所需的电感体积也可以比较小(通常可以用I型磁芯)。因此,这种方案适用于高功率密度、较低输出电压的场合。

4,在功率二极管整流电路中,二极管的RC电路参数计算怎么算啊?

你到电感厂家或商行都有多种哦规格的电感,可选用设计。
其实,你可以参阅差不多的电路,假设一个参数,就可以计算另一个参数,这是高等数学函数计算常用的办法哦;
题中,你讲的是RC电路,也与电感无关哦,通常的工程计算常常哪个先确认C,而且这个C的容量常常取决于输入电压,例如12V与220V 就根本不一样,12V可用2000---10000uf;220V充其量才几百就到了不起了。
R的选取常常取决于负载电流,考虑到电阻的耗散功率,才用电感(扼流圈),这时候才要考虑L的参数,其实,这个电感只要满足电流,越大越好,当然,不考虑经济因素。

5,请问,如何求buck电路中的电容与电感,具体公式是什么? 谢谢

只要是输出电压低于输入电压都可以使用BUCK电路。电感的取值取决于最大脉冲宽度,使其在脉冲宽度最大的情况下电流不进入不饱和段,也就是脉冲宽度越大,所取的电感量也越大。电容器主要起平波作用,与脉冲频率和负载的阻抗R有关,可以取RC≥10倍脉冲周期左右,具体看对输出纹波的要求。

电感公式:L=(Vin-Vo)*Vo/(Vin*ΔI*Fsw)
电容公式:Co最小值=L*(额定输出电流^2-ΔV试验时输出突变电流最小值^2)/[额定输出电压^2-(额定输出电压-ΔV)^2]
这个公式是负载突变时,跌落电压公式。

6,变压器匝数计算 怎么算???

变压器初、次线匝数,与其输入输出电压及输出功率有关,功率大小又与硅钢片截面积有关。

常用小型变压器每伏匝数计算公式为:N=10000/4.44FBS
这里:N—每伏匝数,F—交流电频率(我国为50HZ),B—磁通密度,S——铁芯截面积
磁通密度一般因材料而异,常见的硅钢片取1.2-1.7左右.
根据此公式,你量一下变压器磁芯尺寸,计算出截面积,就可推算出每伏匝数。知道每伏匝数后,即可方便计算出初、次线匝数了。

例如:量得一小型变器中间舌宽为2CM,叠厚为3CM,则基截面为:2*3=6(CM^2)
如用H23片,取B值为1.4。则计算每伏匝数为:
N=10000/4.44*50*1.4*6=5.36(匝/伏)
如果初线接220V电源,则初线匝数=220*5.36=1179.2(匝)取1179即可。设次级输出电源为12V,则12*5.36=64.36,取64匝即可,你如果是自己维修绕制,还需根据功率和电压再计算出线经大小。

7,升压变压器匝数计算公式

单相小型变压器简易计算方法
1、根据容量确定一次线圈和二次线圈的电流
I=P/U
I单位A、P单位vA、U单位v.
2、根据需要的功率确定铁芯截面积的大小
S=1.25√P(注:根号P)
S单位cm²
3、知道铁芯截面积(cm²)求变压器容量
P=(S/1.25)²(VA)
4、每伏匝数
ωo=45/S
5、导线直径
d=0.72√I (根号I)
6、一、二次线圈匝数
ω1=U1ωo
ω2=U2ωo

例:制作12V变220V,横截面积3*3.3cm的磁芯单相变压器,求相关数据?
1、知道铁芯截面积(cm²)求变压器容量
铁芯截面积S=3X3.3=9.9 (cm²)
变压器容量 P=(S/1.25)²(VA)=(9.9/1.25)²=62.7W
2、求每伏匝数
ωo=45/9.9=4.5匝
3、求线圈匝数
初级 ω1=U1ωo=12X4.5=54匝
次级 ω2=1.05 U2ωo =1.05X220X4≈1040匝
4、求一、二次电流
初级 I1=P/U1=62.7/12 ≈ 5A
次级 I2=P/U2=62.7/220≈ 0.3A
5、求导线直径
初级 d1=0.72√I (根号I1)=0.72√5≈ 1.5mm
次级 d2=0.72√I (根号I2)=0.72√0.3≈ 0.13mm

8,根据基于BUCK的开关电源的纹波电流的计算公式

对于BUCK变换器,在电流连续模式下,V0/Vi就是占空比D,根据电感伏安特性,V=L*di/dt,自然会得出di=V*dt/L,假设主开关管在dt的时间导通,亦即在dt的时间电流从最小变到最大,即dt=D*T=D/fs=VO/Vi*fs,而在此期间,电感电压V=(Vi-V0),故可得到di=V*dt/L=(Vi-V0)*VO/Vi*fs*L=V0*(1-V0/Vi)/fs*L,即说明公式没错,至于您测试的结果,也许参数和实际之间有问题。在核实一下。

上一篇:原发性癫痫治疗,原发性癫痫怎么才能治好
下一篇:没有了
相关文章
最新资讯
热门资讯