本文目录索引 1,n的平方分之一数列求和 2,1到n的平方和数列求和 3,怎样让EXCEL表格中两个数列中的数字相加,自动求和? 4,谁能告诉我黎曼Zeta函数的导数的零点分布和黎曼猜想本身是一种怎样的等价关系? 5,黎曼zeta函数是什么,具体点 6,什么是黎曼猜
本文目录索引
- 1,n的平方分之一数列求和
- 2,1到n的平方和数列求和
- 3,怎样让EXCEL表格中两个数列中的数字相加,自动求和?
- 4,谁能告诉我黎曼Zeta函数的导数的零点分布和黎曼猜想本身是一种怎样的等价关系?
- 5,黎曼zeta函数是什么,具体点
- 6,什么是黎曼猜想?
- 7,黎曼ζ 函数ζ是黎曼提出来的吗
1,n的平方分之一数列求和
有啊,怎么没有公式?
这个和被称之为黎曼泽塔函数(Riemann Zeta(ζ) function)。
指数为2时,和是
Σ_(1<=k<+∞) 1/ k^2 = π^2 / 6.
黎曼泽塔函数还可以表示成各种积分和级数形式。不过,这个求和过程可能比较麻烦,但是应该可以用积分做的。实际上,当指数为正偶数时,和都是π的指数形势。
部分和好像比较复杂,不知道。不过你可以查查那些级数表示形势,应该有可以限定部分和的。
2,1到n的平方和数列求和
1²+2²+3²+....+n²=n(n+1)(2n+1)/6。 利用恒等式(n+1)³=n³+3n²+3n+1,可以得到: (n+1)³-n³=3n²+3n+1 n³-(n-1)³=3(n-1)²+3(n-1)+1 3³-2³=3*(2²)+3*2+1 2³-1³=3*(1²)+3*1+1 把这n个等式两端分别相加,得: (n+1)³-1=3(1²+2²+3²+.+n²)+3(1+2+3+...+n)+n 由于1+2+3+...+n=(n+1)n/2 代入上式得:n³+3n²+3n=3(1²+2²+3²+.+n²)+3(n+1)n/2+n 整理后得:1+2+3+.+n=n(n+1)(2n+1)/6 数列求和方法 数列求和对按照一定规律排列的数进行求和。求Sn实质上是求{an}的通项公式,应注意对其含义的理解。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和。 数列是高中代数的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要有一定的技巧。
3,怎样让EXCEL表格中两个数列中的数字相加,自动求和?
1、首先,我们打开我们电脑上面的excel,然后我们在里面输入一些数字,之后我们选中图示中的单元格,然后点击公式。 2、之后我们点击自动求和。 3、弹出的界面,我们直接按回车键。 4、结果如图所示,这样就自动求和了。 5、我们在下方的单元格中输入=B3+B4+B5,然后我们按回车键。 6、结果如图所示,这就是手动相加求和。
4,谁能告诉我黎曼Zeta函数的导数的零点分布和黎曼猜想本身是一种怎样的等价关系?
注意了,不是等价问题,而是本身就是,不存在另一个等价的表述。
【黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家波恩哈德·黎曼(1826--1866)于1859年提出。
德国数学家希尔伯特列出23个数学问题.其中第8问题中便有黎曼假设。素数在自然数中的分布并没有简单的规律。黎曼发现素数出现的频率与黎曼ζ函数紧密相关。黎曼猜想提出:黎曼ζ函数ζ(s)非平凡零点(在此情况下是指s不为-2、-4、-6等点的值)的实数部份是1/2。即所有非平凡零点都应该位于直线1/2 + ti(“临界线”(critical line))上。t为一实数,而i为虚数的基本单位。至今尚无人给出一个令人信服的关于黎曼猜想的合理证明。】
5,黎曼zeta函数是什么,具体点
黎曼猜想是关于黎曼ζ函数ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼猜想。
与费尔马猜想时隔三个半世纪以上才被解决,哥德巴赫猜想历经两个半世纪以上屹立不倒相比,黎曼猜想只有一个半世纪的纪录还差得很远,但它在数学上的重要性要远远超过这两个大众知名度更高的猜想。黎曼猜想是当今数学界最重要的数学难题。目前有消息指尼日利亚教授奥派耶米伊诺克(OpeyemiEnoch)成功解决黎曼猜想,然而克雷数学研究所既不证实也不否认伊诺克博士正式解决了这一问题。
历史上关于黎曼猜想被证实的闹剧时常传出,近日所谓黎曼猜想被尼日利亚籍教授证明的网文中并没有说明克雷数学研究所已经承认并授予奖金,克雷数学研究所官网目前并无任何表态,而学界专业评价趋于消极。
6,什么是黎曼猜想?
Riemann 猜想究竟是一个什么样的猜想呢? 在回答这个问题之前我们先得介绍一个函数: Riemann ζ 函数。 这个函数虽然挂着 Riemann 的大名, 其实并不是 Riemann 首先提出的。 但 Riemann 虽然不是这一函数的提出者, 他的工作却大大加深了人们对这一函数的理解, 为其在数学与物理上的广泛应用奠定了基础。 后人为了纪念 Riemann 的卓越贡献, 就用他的名字命名了这一函数。
那么究竟什么是 Riemann ζ 函数呢? Riemann ζ 函数 ζ(s) 是级数表达式 (n 为正整数)
ζ(s) = ∑n n-s (Re(s) > 1)
在复平面上的解析延拓。 之所以要对这一表达式进行解析延拓, 是因为 - 如我们已经注明的 - 这一表达式只适用于复平面上 s 的实部 Re(s) > 1 的区域 (否则级数不收敛)。 Riemann 找到了这一表达式的解析延拓 (当然 Riemann 没有使用 “解析延拓” 这样的现代复变函数论术语)。 运用路径积分, 解析延拓后的 Riemann ζ 函数可以表示为:如右上角图
式中的积分实际是一个环绕正实轴 (即从 +∞ 出发, 沿实轴上方积分至原点附近, 环绕原点积分至实轴下方, 再沿实轴下方积分至 +∞ - 离实轴的距离及环绕原点的半径均趋于 0) 进行的围道积分; 式中的 Γ 函数 Γ(s) 是阶乘函数在复平面上的推广, 对于正整数 s>1: Γ(s)=(s-1)!。 可以证明, 这一积分表达式除了在 s=1 处有一个简单极点外在整个复平面上解析。 这就是 Riemann ζ 函数的完整定义。
编辑本段黎曼猜想
运用右上角图中的积分表达式可以证明, Riemann ζ 函数满足以下代数关系式:
ζ(s) = 2Γ(1-s)(2π)s-1sin(πs/2)ζ(1-s)
从这个关系式中不难发现, Riemann ζ 函数在 s=-2n (n 为正整数) 取值为零 - 因为 sin(πs/2) 为零[注三]。 复平面上的这种使 Riemann ζ 函数取值为零的点被称为 Riemann ζ 函数的零点。 因此 s=-2n (n 为正整数) 是 Riemann ζ 函数的零点。 这些零点分布有序、 性质简单, 被称为 Riemann ζ 函数的平凡零点 (trivial zeros)。 除了这些平凡零点外, Riemann ζ 函数还有许多其它零点, 它们的性质远比那些平凡零点来得复杂, 被称为非平凡零点 (non-trivial zeros) 。 对 Riemann ζ 函数非平凡零点的研究构成了现代数学中最艰深的课题之一。Riemann 猜想就是一个关于这些非平凡零点的猜想。
Riemann 猜想: Riemann ζ 函数的所有非平凡零点都位于复平面上 Re(s)=1/2 的直线上。
这就是 Riemann 猜想的内容, 它是 Riemann 在 1859 年提出的。从其表述上看, Riemann 猜想似乎是一个纯粹的复变函数命题,但它其实却是一曲有关素数分布的神秘乐章。
编辑本段证明黎曼猜想的尝试
黎曼1859年在他的论文 Über die Anzahl der Primzahlen unter einer gegebenen Größe' 中提及了这个著名的猜想,但它并非该论文的中心目的,他也没有试图给出证明。黎曼知道ζ函数的不平凡零点对称地分布在直线s = ½ + it上,以及他知道它所有的不平凡零点一定位于区域0 ≤ Re(s) ≤ 1中。
1896年,雅克·阿达马和 Charles Jean de la Vallée-Poussin 分别独立地证明了在直线Re(s) = 1上没有零点。连同了黎曼对于不非凡零点已经证明了的其他特性,这显示了所有不平凡零点一定处于区域0 < Re(s) < 1上。这是素数定理第一个完整证明中很关键的一步。
1900年,大卫·希尔伯特将黎曼猜想包括在他著名的23条问题中,黎曼猜想与哥德巴赫猜想一起组成了希尔伯特名单上第8号问题。当被问及若他一觉醒来已是五百年后他将做什么时,希尔伯特有名地说过他的第一个问题将是黎曼猜想有否被证明。(Derbyshire 2003:197; Sabbagh 2003:69; Bollobas 1986:16). 黎曼猜想是希尔伯特问题中唯一一个被收入克雷数学研究所的千禧年大奖数学难题的。
1914年,高德菲·哈罗德·哈代证明了有无限个零点在直线Re(s) = ½上。然而仍然有可能有无限个不平凡零点位于其它地方(而且有可能是最主要的零点)。后来哈代与约翰·恩瑟·李特尔伍德在1921年及塞尔伯格在1942年的工作(临界线定理)也就是计算零点在临界线 Re(s) = ½ 上的平均密度。
近几十年的工作集中于清楚的计算大量零点的位置(希望借此能找到一个反例)以及对处于临界线以外零点数目的比例置一上界(希望能把上界降至零)
过去数十年很多数学家队伍声称证明了黎曼猜想,而截至2007年为止有少量的证明还没被验证。但它们都被数学社群所质疑,而专家们多数并不相信它们是正确的。艾希特大学的 Matthew R. Watkins 为这些或严肃或荒唐的声明编辑了一份列表,而一些其它声称的证明可在arXiv数据库中找到。
7,黎曼ζ 函数ζ是黎曼提出来的吗
关于黎曼ζ(s)函数的全定义积分式有两大类共四种:
1、第一类:ζ(s)的围道积分定义式.是全定义的,只有一种,这在卢昌海的《黎曼猜想漫谈》中说明得很清楚.
2、第二类:ζ(s)的区间积分定义式.有三种:
(1)ζ(s)的椭圆级数全定义积分式.由ζ(s)的椭圆级数半定义积分式(ReS>1)通过解析开拓而得.
(2)ζ(s)的黎曼变换对称积分式.是全定义的,有对称性,由ζ(s)的椭圆级数半定义积分式(ReS>1)进行黎曼变换而得.
(3)ζ(s)的几何级数全定义积分式.由ζ(s)的几何级数半定义积分式(ReS>1)通过解析开拓而得.
黎曼ζ(s)函数的半定义积分式和对称积分式,在《数学百科词典》中有详细的介绍.其ζ(s)的椭圆级数全定义积分式和几何级数全定义积分式是本人在化简黎曼猜想的高等方程时发现的.
下一篇:没有了