本文目录索引 1,请问,如何求buck电路中的电容与电感,具体公式是什么? 谢谢 2,buck电路稳压原理 3,buck电路为什麼输出电压输入电压?什麼原因造成了降压?buck电路都有什麼应用? 4,buck电路是怎样降压的?降压原理越详细越好 5,电压源逆变器VSI和电流
本文目录索引
- 1,请问,如何求buck电路中的电容与电感,具体公式是什么? 谢谢
- 2,buck电路稳压原理
- 3,buck电路为什麼输出电压<输入电压?什麼原因造成了降压?buck电路都有什麼应用?
- 4,buck电路是怎样降压的?降压原理越详细越好
- 5,电压源逆变器VSI和电流源逆变器CSI,这个两种逆变器和Buck电路和Boost电路有什么对应关系?
- 6,buck电路主要应用在那些场合?
1,请问,如何求buck电路中的电容与电感,具体公式是什么? 谢谢
只要是输出电压低于输入电压都可以使用BUCK电路。电感的取值取决于最大脉冲宽度,使其在脉冲宽度最大的情况下电流不进入不饱和段,也就是脉冲宽度越大,所取的电感量也越大。电容器主要起平波作用,与脉冲频率和负载的阻抗R有关,可以取RC≥10倍脉冲周期左右,具体看对输出纹波的要求。
电感公式:L=(Vin-Vo)*Vo/(Vin*ΔI*Fsw)
电容公式:Co最小值=L*(额定输出电流^2-ΔV试验时输出突变电流最小值^2)/[额定输出电压^2-(额定输出电压-ΔV)^2]
这个公式是负载突变时,跌落电压公式。
2,buck电路稳压原理
电路呢,?
2.2.1开关器件导通和关断时,电路的动态工作过程分析
2-1图 开关导通、关断的等效电路图
当驱动信号使开关管导通时如2-1(b图),电容C开始充电,输出电压加在负载上。电容C在充电过程中电感L的电流逐渐增加,储存的能量也逐渐增加,此时续流二极管反向截止。
当驱动信号使开关管截止时如2-1(c图),L开始释放能量,L中的电流开始减小,L产生的感应电动势使续流二极管导通,电流通过电感、续流二极管构成回路给负载传递能量。当负载电压低于电容C两端的电压时,C开始向负载释放能量。驱动控制信号使开关管周而复始的重复上述过程,从而使输出电压趋向一个定值。[12]
BUCK变换器有三种工作模式:第一种是电感电流处于连续的工作模式。第二种时电感电流处于断续的工作模式。第三种是电感电流处于临界的工作模式。所谓的临界模式是,在开关管截止到导通这个时间电感L中的能量刚好释放完,也就是开关管截止终止时电感电流刚好为零。[13]
等效的电路模型及基本规律
2-2图等效电路模型图
(1)从电路可以看出,电感L和电容C组成低通滤波器,此滤波器设计的原则是使 us(t) 的直流分量可以通过,而抑制 us(t) 的谐波分量通过;电容上输出电压 uo(t)就是us(t)的直流分量再附加微小纹波uripple(t) 。
(2)电路工作频率很高,一个开关周期内电容充放电引起的纹波uripple(t) 很小,相对于电容上 输出的直流电压Uo有:
(2-1)
电容上电压宏观上可以看作恒定。电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。[15]
(3)一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。[12]
这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。
(4)开关S置于1位时,电感电流增加,电感储能;而当开关S置于2位时,电感电流减小,电感释能。假定电流增加量大于电流减小量,则一个开关周期内电感上磁链增量为:
(2-2)
此增量将产生一个平均感应电势:
(2-3)
此电势将减小电感电流的上升速度并同时降低电感电流的下降速度,最终将导致一个周期内电感电流平均增量为零;一个开关周期内电感上磁链增量小于零的状况也一样。
这种在稳态状况下一个周期内电感电流平均增量(磁链平均增量)为零的现象称为:电感伏秒平衡。这也是电力电子电路稳态运行时的又一个普遍规律。
3,buck电路为什麼输出电压<输入电压?什麼原因造成了降压?buck电路都有什麼应用?
buck斩波电路 即降压型斩波电路 。输入大于输出。看资料的公式看不懂? 那通俗的讲一下:上图中 上面的是基本电路结构 ,下面的是开关管导通和关断的两个状态。 1:导通的时候,瞬间输入电压增加 ,电感L阻碍作用 ,这时L 和复杂R是串联 到电源两端。那么L必定要分得一部分电压, 那么输出端电压 即R两端电压必定小于输入电压 2:关断的时候,输入电压和电路是断开的 ,这时电感L就成了电源,这时L储存的能量向负载释放,要知道L的电压肯定小于输入电压的 ,由第一个状态可知。 综上两个反复交替的状态,输出都是小于输入电压的 ,所以降压了 ,至于输出电压是多少 ,只需调节导通和截止的 时间比就可以了 。
4,buck电路是怎样降压的?降压原理越详细越好
开关电源通过改变开关器件的导通比来有效地控制输出电压和电流的大小。通常它在几十kHz以上的开关频率下工作,当开关导通时,它将流过浪涌电流Cdv/dt;当开关断开时,其两端将会产生浪涌电压Ldi/dt,形成较强的电磁骚扰源。随着半导体开关器件的不断发展,开关频率将提高到MHz数量级,使电磁骚扰更加严重。因此,必须采用相应的措施,加强开关电源的电磁兼容性(EMC)。
电磁兼容性是指在不损失有用信号所包含信息的条件下,信息和干扰共存的能力。电力电子装置在其使用环境下,承受来自外部电磁干扰的同时也向周围环境释放干扰。在设计制造电力电子装置时,应考虑到电力电子装置在工作时所产生的电磁骚扰不对在同一环境中工作的其它电子设备的运行产生不良影响,同时来自外部环境的电磁干扰又不会影响电力电子装置的工作。
1Buck系统的电磁干扰
以下结合Buck变换器来具体讨论电磁干扰产生的原因和条件,从而找出抑制和消除的方法。 主电路主要由功率开关管S、肖特基二极管D、滤波电容C、电感L、阻性负载Ro以及无感采样电阻RL组成。此电路的基本参数是输入端为36V铅酸蓄电池,输出要求为10A恒流,开关频率为50kHz。控制芯片采用SG3525,驱动芯片采用TLP250。辅助电源采用反激。主电路选择合适的闭环参数是重要的一步,合适的闭环参数可以使电路稳定,产生较小的EMD。
5,电压源逆变器VSI和电流源逆变器CSI,这个两种逆变器和Buck电路和Boost电路有什么对应关系?
逆变器是把直流电能(电池、畜电瓶)转变成交流电(一般为220v50HZ正弦或方波) 典型的DC/AC逆变器其主要由两大部分构成:(1)半导体功率集成器件, (2)逆变电路。 逆变系统的核心是逆变开关电路,简称逆变电路。是通过半导体开关器件的导通与关断完成逆变的功能,但一个完整的逆变电路,除了主逆变电路外,还要有控制电路、输入电路、输出电路、辅助电路和保护电路等构成。 各部分电路的主要功能如下: (1) 输入电路: 为主逆变电路提供可确保其正常工作的直流电压。 (2) 输出电路: 对主逆变电路输出的交流电的质量(包括波形、频率、电压电流幅值相位等)进行修正、补偿、调理,使之能满足用户要求。 (3) 控制电路: 为主逆变电路提供一系列的控制脉冲来控制逆变开关管的导通和关断,配合主逆变电路完成逆变功能。在逆变电路中,控制电路与主逆变电路同样重要。 (4) 辅路电路: 将输入电压变换成适合控制电路工作的直流电压。包括多种检测电路。 (5) 保护电路: 输入过压、欠压保护;输出过压、欠压保护;过载保护;过流和短路保护;过热保护等。 (6) 主逆变电路: 由半导体开关器件组成的变换电路,分为隔离式和非隔离式两大类。如变频器、能量回馈等都是非隔离的;UPS、通信基础开关电流等是隔离式逆变电路。隔离式逆变电路还应包括逆变电压器。无论是隔离式或非隔离式主逆变电路,基本上都是由升压电路Buck和降压电路Boost两种电路不同拓扑形式组合而成。这些组合在隔离式逆变器主电路中就构成了单端式(正激式和反激式两种)、推挽式、半桥式和全桥式等。这些电路既可以组成单项逆变器,也可组合成三相逆变器。
6,buck电路主要应用在那些场合?
主要应用于低压大电流领域,其目的是为了解决续流管的导通损耗问题。采用一般的二极管续流,其导通电阻较大,应用在大电流场合时,损耗很大。用导通电阻非常小的MOS管代替二极管,可以解决损耗问题,但同时对驱动电路提出了更高的要求。
此外,对Buck电路应用同步整流技术,用MOS管代替二极管后,电路从拓扑上整合了Buck和Boost两种变换器,为实现双向DC/DC变换提供了可能。在需要单向升降压且能量可以双向流动的场合,很有应用价值,如应用于混合动力电动汽车时,辅以三相可控全桥电路,可以实现蓄电池的充放电。
下一篇:没有了