电渗流是如何产生的?电渗流在电泳分离过程中有什么意义?,毛细管电泳的基本原理,毛细管电泳的基本原理...
电渗流是如何产生的?电渗流在电泳分离过程中有什么意义?
电渗现象中整体移动着的液体称为电渗流。HPCE中通常使用石英作为毛细管材料,石英的等电点约为1.5,因此在常用缓冲溶液中(pH>3),管壁带负电,石英毛细管表面的硅羟基(≡SiOH)电离为硅氧基负离子(≡SiO-),并将溶液中水合离子(一般为阳离子)吸附到毛细管表面附近,形成双电层。当在毛细管两端加电压时,双电层中的阳离子向阴极移动,由于离子是溶剂化的,所以带动了毛细管中整体溶液向阴极移动,形成电渗流(EOF)。电渗流在电泳分离过程中的有重要意义。体现在:①使混合物中的正、负离子和中性分子产生差速迁移而实现分离;②通过EOF的大小和方向的控制,可以提高CE的分离效率、选择性和分离度。
毛细管电泳的基本原理
毛细管电泳(capillary electrophoresis,CE)是20世纪80年代初发展起来的一种新型分离分析技术,乃经典电泳技术和现代微柱分离有机结合的产物,是继高效液相色谱(HPLC)之后,分析科学领域的又一次革命。 毛细管电泳泛指以高压电场为驱动力,以毛细管为分离通道,依据样品中各组分之间淌度和分配行为上的差异而实现分离的一类液相分离技术。毛细管电泳仪的基本结构包括一个高压电源,一根毛细管,一个检测器及两个供毛细管两端插入而又可和电源相连的缓冲液贮瓶。 毛细管电泳仪的工作原理:毛细管电泳所用的石英毛细管柱,在pH>3情况下,其内表面带负电,和溶液接触时形成一双电层。在高电压作用下,双电层中的水合阳离子引起流体整体朝负极方向移动的现象叫电渗。 粒子在毛细管内电解质中的迁移速度等于电泳和电渗流(EOF)两种速度的矢量和。正离子的运动方向和电渗流一致,故最先流出;中性粒子的电泳速度为“零”,故其迁移速度相当于电渗流速度;负离子的运动方向与电渗流方向相反,但因电渗流速度一般都大于电泳流速度,故它将在中性粒子之后流出,从而因各种粒子迁移速度不同而实现分离。 理论基础:如果溶质纵向扩散是区带展宽的唯一因素,对于CE来说,可以通过增大分离高压和缩短毛细管来提高速度,同时兼顾分离效率。 在任何给定的时间内要获得最高的理论塔板数,分离电压与毛细管长度的比例应该最大,也就是说在只考虑溶质纵向扩散的前提下,采用尽可能高的分离电压和短的毛细管,可以实现高柱效和快速分离。高电渗流同样可以提高分析速度和柱效。
毛细管电泳的基本原理
毛细管电泳的基本原理 毛细管电泳(capillary electrophoresis, CE)又叫高效毛细管电泳(HPCE), 是近年来发展最快的分析方法之一。1981年Jorgenson和Lukacs首先提出在75μm内径毛细管柱内用高电压进行分离, 创立了现代毛细管电泳。 1984年Terabe等建立了胶束毛细管电动力学色谱。1987年Hjerten 建立了毛细管等电聚焦, Cohen和Karger提出了毛细管凝胶电泳。 1988~1989年出现了第一批毛细管电泳商品仪器。短短几年内, 由于CE符合了以生物工程为代表的生命科学各领域中对多肽、蛋白质(包括酶,抗体)、核苷酸乃至脱氧核糖核酸(DNA)的分离分析要求, 得到了迅速的发展。CE是经典电泳技术和现代微柱分离相结合的产物。CE和高效液相色谱法(HPLC)相比, 其相同处在于都是高效分离技术, 仪器操作均可自动化, 且二者均有多种不同分离模式。 二者之间的差异在于:CE用迁移时间取代HPLC中的保留时间, CE的分析时间通常不超过30min, 比HPLC速度快;对CE而言, 从理论上推得其理论塔板高度和溶质的扩散系数成正比, 对扩散系数小的生物大分子而言, 其柱效就要比HPLC高得多。 CE所需样品为nl级, 最低可达270fl, 流动相用量也只需几毫升, 而HPLC所需样品为μl级, 流动相则需几百毫升乃至更多;但CE仅能实现微量制备, 而HPLC可作常量制备。
下一篇:没有了