hdfs

时间:2023-11-01 08:36:00 编辑:大鹏 来源:长期打折网

hdfs是什么,HDFS 为何在大数据领域经久不衰?,hadoop有哪些优缺点,hdfs的联邦部署多吗...

hdfs是什么
hdfs是什么
提示:

hdfs是什么

Hadoop分布式文件系统(HDFS)是指被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统(Distributed File System)。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。HDFS放宽了一部分POSIX约束,来实现流式读取文件系统数据的目的。HDFS在最开始是作为Apache Nutch搜索引擎项目的基础架构而开发的。HDFS是Apache Hadoop Core项目的一部分。
HDFS有着高容错性(fault-tolerant)的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以实现流的形式访问(streaming access)文件系统中的数据。

HDFS 为何在大数据领域经久不衰?
提示:

HDFS 为何在大数据领域经久不衰?

大数据中最宝贵、最难以代替的就是数据,一切都围绕数据。 HDFS是最早的大数据存储系统,存储着宝贵的数据资产,各种新算法、框架要想得到广泛使用,必须支持HDFS,才能获取已存储在里面的数据。所以大数据技术越发展,新技术越多,HDFS得到的支持越多,越离不开HDFS。 HDFS也许不是最好的大数据存储技术,但依然是最重要的大数据存储技术 。 HDFS是如何实现大数据高速、可靠的存储和访问的呢? Hadoop分布式文件系统HDFS的设计目标是管理数以千计的服务器、数以万计的磁盘,将大规模的服务器计算资源当作一个单一存储系统进行管理,对应用程序提供数以PB计的存储容量,让应用程序像使用普通文件系统一样存储大规模的文件数据。 文件以多副本的方式进行存储: 缺点: 优点: HDFS的大容量存储和高速访问的实现。 RAID将数据分片后,在多块磁盘上并发进行读写访问,提高了存储容量、加快了访问速度,并通过数据冗余校验提高了数据可靠性,即使某块磁盘损坏也不会丢数据。将RAID的设计理念扩大到整个分布式服务器集群,就产生了分布式文件系统,这便是Hadoop分布式文件系统的核心原理。 和RAID在多个磁盘上进行文件存储及并行读写的思路一样,HDFS是在一个大规模分布式服务器集群上,对数据分片后进行并行读写及冗余存储。因为HDFS可部署在一个大的服务器集群,集群中所有服务器的磁盘都可供HDFS使用,所以整个HDFS的存储空间可以达到PB级。 HDFS是主从架构。一个HDFS集群会有一个NameNode(命名节点,简称NN),作为主服务器(master server)。 HDFS公开了文件系统名称空间,允许用户将数据存储在文件中,就好比我们平时使用os中的文件系统一样,用户无需关心底层是如何存储数据的。 在底层,一个文件会被分成一或多个数据块,这些数据库块会被存储在一组数据节点中。在CDH中数据块的默认128M。 在NameNode,可执行文件系统的命名空间操作,如打开,关闭,重命名文件等。这也决定了数据块到数据节点的映射。 HDFS被设计为可运行在普通的廉价机器上,而这些机器通常运行着一个Linux操作系统。一个典型的HDFS集群部署会有一个专门的机器只能运行 NameNode ,而其他集群中的机器各自运行一个 DataNode 实例。虽然一台机器上也可以运行多个节点,但不推荐。 负责文件数据的存储和读写操作,HDFS将文件数据分割成若干数据块(Block),每个DataNode存储一部分Block,这样文件就分布存储在整个HDFS服务器集群中。 应用程序客户端(Client)可并行访问这些Block,从而使得HDFS可以在服务器集群规模上实现数据并行访问,极大提高访问速度。 HDFS集群的DataNode服务器会有很多台,一般在几百台到几千台,每台服务器配有数块磁盘,整个集群的存储容量大概在几PB~数百PB。 负责整个分布式文件系统的元数据(MetaData)管理,即文件路径名、数据块的ID以及存储位置等信息,类似os中的文件分配表(FAT)。 HDFS为保证数据高可用,会将一个Block复制为多份(默认3份),并将多份相同的Block存储在不同服务器,甚至不同机架。当有磁盘损坏或某个DataNode服务器宕机,甚至某个交换机宕机,导致其存储的数据块不能访问时,客户端会查找其备份Block访问。 HDFS中,一个文件会被拆分为一个或多个数据块。默认每个数据块有三个副本,每个副本都存放在不同机器,而且每一个副本都有自己唯一的编号: 文件/users/sameerp/data/part-0的复制备份数设为2,存储的BlockID分别为1、3: 上述任一台服务器宕机后,每个数据块都至少还有一个备份存在,不会影响对文件/users/sameerp/data/part-0的访问。 和RAID一样,数据分成若干Block后,存储到不同服务器,实现数据大容量存储,并且不同分片的数据能并行进行读/写操作,实现数据的高速访问。 副本存放:NameNode节点选择一个DataNode节点去存储block副本的过程,该过程的策略是在可靠性和读写带宽间权衡。 《Hadoop权威指南》中的默认方式: Google大数据“三驾马车”的第一驾是GFS(Google 文件系统),而Hadoop的第一个产品是HDFS,分布式文件存储是分布式计算的基础。 这些年来,各种计算框架、各种算法、各种应用场景不断推陈出新,但大数据存储的王者依然是HDFS。 磁盘介质在存储过程中受环境或者老化影响,其存储的数据可能会出现错乱。 HDFS对存储在DataNode上的数据块,计算并存储校验和(CheckSum)。在读数据时,重新计算读取出来的数据的校验和,校验不正确就抛异常,应用程序捕获异常后就到其他DataNode上读取备份数据。 DataNode监测到本机的某块磁盘损坏,就将该块磁盘上存储的所有BlockID报告给NameNode,NameNode检查这些数据块还在哪些DataNode上有备份,通知相应的DataNode服务器将对应的数据块复制到其他服务器上,以保证数据块的备份数满足要求。 DataNode会通过心跳和NameNode保持通信,如果DataNode超时未发送心跳,NameNode就会认为这个DataNode已经宕机失效,立即查找这个DataNode上存储的数据块有哪些,以及这些数据块还存储在哪些服务器上,随后通知这些服务器再复制一份数据块到其他服务器上,保证HDFS存储的数据块备份数符合用户设置的数目,即使再出现服务器宕机,也不会丢失数据。 NameNode是整个HDFS的核心,记录着HDFS文件分配表信息,所有的文件路径和数据块存储信息都保存在NameNode,如果NameNode故障,整个HDFS系统集群都无法使用;如果NameNode上记录的数据丢失,整个集群所有DataNode存储的数据也就没用了。 所以,NameNode高可用容错能力非常重要。NameNode采用主从热备的方式提供高可用服务: 集群部署两台NameNode服务器: 两台服务器通过Zk选举,主要是通过争夺znode锁资源,决定谁是主服务器。而DataNode则会向两个NameNode同时发送心跳数据,但是只有主NameNode才能向DataNode返回控制信息。 正常运行期,主从NameNode之间通过一个共享存储系统shared edits来同步文件系统的元数据信息。当主NameNode服务器宕机,从NameNode会通过ZooKeeper升级成为主服务器,并保证HDFS集群的元数据信息,也就是文件分配表信息完整一致。 软件系统,性能差点,用户也许可接受;使用体验差,也许也能忍受。但若可用性差,经常出故障不可用,就麻烦了;如果出现重要数据丢失,那开发摊上大事。 而分布式系统可能出故障地方又非常多,内存、CPU、主板、磁盘会损坏,服务器会宕机,网络会中断,机房会停电,所有这些都可能会引起软件系统的不可用,甚至数据永久丢失。 所以在设计分布式系统的时候,软件工程师一定要绷紧可用性这根弦,思考在各种可能的故障情况下,如何保证整个软件系统依然是可用的。 ## 6 保证系统可用性的策略 任何程序、任何数据,都至少要有一个备份,也就是说程序至少要部署到两台服务器,数据至少要备份到另一台服务器上。此外,稍有规模的互联网企业都会建设多个数据中心,数据中心之间互相进行备份,用户请求可能会被分发到任何一个数据中心,即所谓的异地多活,在遭遇地域性的重大故障和自然灾害的时候,依然保证应用的高可用。 当要访问的程序或者数据无法访问时,需要将访问请求转移到备份的程序或者数据所在的服务器上,这也就是 失效转移 。失效转移你应该注意的是失效的鉴定,像NameNode这样主从服务器管理同一份数据的场景,如果从服务器错误地以为主服务器宕机而接管集群管理,会出现主从服务器一起对DataNode发送指令,进而导致集群混乱,也就是所谓的“脑裂”。这也是这类场景选举主服务器时,引入ZooKeeper的原因。ZooKeeper的工作原理,我将会在后面专门分析。 当大量的用户请求或者数据处理请求到达的时候,由于计算资源有限,可能无法处理如此大量的请求,进而导致资源耗尽,系统崩溃。这种情况下,可以拒绝部分请求,即进行 限流 ;也可以关闭部分功能,降低资源消耗,即进行 降级 。限流是互联网应用的常备功能,因为超出负载能力的访问流量在何时会突然到来,你根本无法预料,所以必须提前做好准备,当遇到突发高峰流量时,就可以立即启动限流。而降级通常是为可预知的场景准备的,比如电商的“双十一”促销,为了保障促销活动期间应用的核心功能能够正常运行,比如下单功能,可以对系统进行降级处理,关闭部分非重要功能,比如商品评价功能。 HDFS是如何通过大规模分布式服务器集群实现数据的大容量、高速、可靠存储、访问的。 1.文件数据以数据块的方式进行切分,数据块可以存储在集群任意DataNode服务器上,所以HDFS存储的文件可以非常大,一个文件理论上可以占据整个HDFS服务器集群上的所有磁盘,实现了大容量存储。 2.HDFS一般的访问模式是通过MapReduce程序在计算时读取,MapReduce对输入数据进行分片读取,通常一个分片就是一个数据块,每个数据块分配一个计算进程,这样就可以同时启动很多进程对一个HDFS文件的多个数据块进行并发访问,从而实现数据的高速访问。关于MapReduce的具体处理过程,我们会在专栏后面详细讨论。 3.DataNode存储的数据块会进行复制,使每个数据块在集群里有多个备份,保证了数据的可靠性,并通过一系列的故障容错手段实现HDFS系统中主要组件的高可用,进而保证数据和整个系统的高可用。

hadoop有哪些优缺点
提示:

hadoop有哪些优缺点

一、HDFS缺点: 1、不能做到低延迟:由于hadoop针对高数据吞吐量做了优化,牺牲了获取数据的延迟,所以对于低延迟数据访问,不适合hadoop,对于低延迟的访问需求,HBase是更好的选择, 2、不适合大量的小文件存储:由于namenode将文件系统的元数据存储在内存中,因此该文件系统所能存储的文件总数受限于namenode的内存容量,根据经验,每个文件、目录和数据块的存储信息大约占150字节。 3、不适合多用户写入文件,修改文件:Hadoop2.0虽然支持文件的追加功能,但是还是不建议对HDFS上的 文件进行修改,因为效率低。 4、对于上传到HDFS上的文件,不支持修改文件,HDFS适合一次写入,多次读取的场景。 5、HDFS不支持多用户同时执行写操作,即同一时间,只能有一个用户执行写操作。 二、HDFS优点: 1、高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。 2、高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。 3、高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。 4、高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。 5、低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。 6、Hadoop带有用Java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。 一、 Hadoop 特点 1、支持超大文件:一般来说,HDFS存储的文件可以支持TB和PB级别的数据。 2、检测和快速应对硬件故障:在集群环境中,硬件故障是常见性问题。因为有上千台服务器连在一起,故障率高,因此故障检测和自动恢复hdfs文件系统的一个设计目标。 3、流式数据访问:HDFS的数据处理规模比较大,应用一次需要大量的数据,同时这些应用一般都是批量处理,而不是用户交互式处理,应用程序能以流的形式访问数据库。 4、简化的一致性模型:对于外部使用用户,不需要了解hadoop底层细节,比如文件的切块,文件的存储,节点的管理。 5、高容错性:数据自动保存多个副本,副本丢失后自动恢复。可构建在廉价机上,实现线性(横向)扩展,当集群增加新节点之后,namenode也可以感知,将数据分发和备份到相应的节点上。 6、商用硬件:Hadoop并不需要运行在昂贵且高可靠的硬件上,它是设计运行在商用硬件的集群上的,因此至少对于庞大的集群来说,节点故障的几率还是非常高的。HDFS遇到上述故障时,被设计成能够继续运行且不让用户察觉到明显的中断。

hdfs的联邦部署多吗
提示:

hdfs的联邦部署多吗

namenode相当于火车站的售票口,所有站内的火车车厢就相当于多个datanode,
当售票口只有一个点时(窗口可以有多个),相当于hadoop1.x,整个火车站的运力受限于当售票口的售票情况,在节假日时也会出现买票排长队的情况,若这时售票系统宕机了,整个火车站的运力就会大打折扣;
为了缓解当前情况,只有多增加些售票点,相当于hadoop2.x中的HDFS联邦,这样在一定程度上就能解决这种问题;

上一篇:science museum怎么读
下一篇:没有了
相关文章
最新资讯
热门资讯